\(\int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx\) [840]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 138 \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 a \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 b \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

[Out]

2*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+
a*cos(d*x+c))/(a+b))^(1/2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*
d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/d/cos(d*x+c
)^(1/2)/(a+b*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {4349, 3939, 3943, 2742, 2740, 3944, 2886, 2884} \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 a \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 b \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

[In]

Int[Sqrt[a + b*Sec[c + d*x]]/Sqrt[Cos[c + d*x]],x]

[Out]

(2*a*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a +
b*Sec[c + d*x]]) + (2*b*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)])/(d*Sqrt[
Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]])

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3939

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[a, Int[S
qrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3944

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[d*Sqrt
[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \, dx \\ & = \left (a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx+\left (b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {\left (a \sqrt {b+a \cos (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (b \sqrt {b+a \cos (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}} \, dx}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \\ & = \frac {\left (a \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (b \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \\ & = \frac {2 a \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 b \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 31.60 (sec) , antiderivative size = 14885, normalized size of antiderivative = 107.86 \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\text {Result too large to show} \]

[In]

Integrate[Sqrt[a + b*Sec[c + d*x]]/Sqrt[Cos[c + d*x]],x]

[Out]

Result too large to show

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 7.01 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.78

method result size
default \(\frac {2 \left (\operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) a -\operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) b +2 \operatorname {EllipticPi}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \frac {a +b}{a -b}, \frac {i}{\sqrt {\frac {a -b}{a +b}}}\right ) b \right ) \sqrt {a +b \sec \left (d x +c \right )}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \sqrt {\cos \left (d x +c \right )}}{d \sqrt {\frac {a -b}{a +b}}\, \left (b +a \cos \left (d x +c \right )\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}}\) \(245\)

[In]

int((a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/d/((a-b)/(a+b))^(1/2)*(EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a-Ellipt
icF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b+2*EllipticPi(((a-b)/(a+b))^(1/2)*(-co
t(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*b)*(a+b*sec(d*x+c))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(c
os(d*x+c)+1))^(1/2)*cos(d*x+c)^(1/2)/(b+a*cos(d*x+c))/(1/(cos(d*x+c)+1))^(1/2)

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\sqrt {a + b \sec {\left (c + d x \right )}}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \]

[In]

integrate((a+b*sec(d*x+c))**(1/2)/cos(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(c + d*x))/sqrt(cos(c + d*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {\sqrt {b \sec \left (d x + c\right ) + a}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)

Giac [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {\sqrt {b \sec \left (d x + c\right ) + a}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((a + b/cos(c + d*x))^(1/2)/cos(c + d*x)^(1/2),x)

[Out]

int((a + b/cos(c + d*x))^(1/2)/cos(c + d*x)^(1/2), x)